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Abstract

We predict the CH4-sensing performance of monolayer MoX2(S, Se, Te) with X-vacancy, Mo-vacancy, and divacancy
by the density functional theory (DFT). The results demonstrate that the combination of different sixth main group
elements with Mo atom has different adsorption behaviors for CH4 gas molecule. Compared with MoX2, MVX, MVMo,
and MVD generally exhibit better adsorption properties under the same conditions. In addition, different defects will
have different effects on adsorption behavior of the systems, the MVD(MoTe2) has the better adsorption, the better
charge transfer, and the shortest distance in these systems. The results are proposed to predict the CH4 gas molecule
adsorption properties of MVD(MoTe2) and would help in guiding experimentalists to develop better materials based on
MoX2 for efficient gas detection or sensing applications.
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Introduction
Methane (CH4) is the simplest organic compound with
colorless and tasteless gas [1–4], which is basically non-
toxic to human beings, the oxygen content in the air will
obviously decrease when the concentration of methane
is too high, which makes people suffocate. When the
concentration of methane reaches 25–30% in the air, it
will cause headaches, dizziness, fatigue, inattention, rapid
breathing and heartbeat, and ataxia [5–7]. Since the rise
of graphene [8, 9] and the discovery of topological insula-
tors [10], a lot of interesting physics have been found in
systems with reduced dimensions. Other two-dimensional
(2D) material, such as monolayers or few-layer systems
(nanolayers) of transition-metal dichalcogenides (TMDs),
gain importance because of their intrinsic band gap [11–
15]. TMDs are MX2-type compounds where r(S, Se, Te)
[16–19]. These materials form layered structures in which
the different X-M-X layers are held together by weak van
der Waals forces [20–26]. Yi Li [27] studied that the ad-
sorption energy of COF2 on Ni-MoS2 was better than CF4,
and Ni-MoS2 acted as electron donor and obvious charge

transfer was observed. Soumyajyoti Haldar [28] reported
that structural, electronic, and magnetic properties of
atomic scale defects in 2D transition metal dichalcogen-
ides MX2, and different vacancy had a great effect on dif-
ferent 2D dichalcogenides MX2, it is likely that band gap,
density of states, some properties, and so on. Janghwan
Cha [29] used different functionals to show the relatively
binding energies about gas molecule and MoX2. The
optPBE-vdW functionals showed relatively large binding
energies. Furthermore, the TMDs are promising materials
to realize gas sensors, so we study the effect of many de-
fects on MoX2(X=S, Se, Te) for structure, band gap [30–
32], adsorption energy, charge transfer, etc. This paper
studied the interaction of methane with monolayer MoX2

by first-principle simulation (see Fig. 1). The green color
ball is Mo atom, and the yellow color ball is X atom, the
distance of d1 for S-S, Se-Se, and Te-Te is 3.190 Å, 3.332
Å, and 3.559 Å, respectively, the distance of d2 is the same
as the three cases of d1. This work was based on DFT, and
the adsorption energy, charge transfer, adsorption dis-
tance, and density of states (DOS) of CH4 gas molecule on
MoX2 were studied.
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Method and Theory
A 4 × 4 supercell of MoX2 (32 X atoms and 16 Mo
atoms) and CH4 gas molecule adsorbed onto it was built
in Materials studio [33–36]. DMol3 [37] software was
used for calculation. In this paper, the Perdew, Burke,
and Ernzerhof (PBE) [38, 39] functions with generalized
gradient approximation (GGA) were selected to describe
the exchange energy Vxc. The Mo was generated in
4p65s14d5 configuration and another was used for the
generation of the valence electrons of X. The Brillouin
zone of MoX2 was sampled using a 6 × 6 × 1 k-point
grid and Methfessel-Paxton smearing of 0.01 Ry. The

cutoff energy was 340 eV with self-consistence-field
(SCF) converged of 1.0 × 10−5 eV. All the atomic struc-
tures were relaxed until the maximum displacement tol-
erance of 0.001 Å and maximum force tolerance of 0.03
eV/Å [40, 41].
We calculated the adsorption energy (Ead) in the

adsorbed systems, which was defined in the following
equation:

Ea ¼ EMoX2þCH4 gasmolecule− EMoX2 þ ECH4 gas molecule
� �

Where, EMoX2 + CH4 gas molecule, EMoX2 and ECH4 gas mol-

ecule represent the energies of the monolayer MoX2 adsorbed
system, monolayer MoX2, and a CH4 gas molecule, respect-
ively. All energies achieve the best optimization after struc-
tural optimization. We used Mulliken’s population analysis
to study the charge transfer.

Results and Discussion
Firstly, we discussed the geometric and electric struc-
tures of the four MoX2 substrates (ee in Fig. 2). The
bond length of Mo-S, Mo-Se, and Mo-Te were 2.426 Å,
2.560 Å, and 2.759 Å, which were in good agreement
with experimental value of 2.410 Å (MoS2) [42, 43],
2.570 Å (MoSe2) [44] and 2.764 Å (MoTe2) [45], the
four structures MoX2 were in this paper, pristine MoX2,
MVX(one X atom vacancy), MVMo(one Mo atom va-
cancy), and MVD(one X atom and one Mo atom va-
cancy) respectively. Full structural relaxation showed
that the stretching X-Mo bond length from 2.420 Å to

Fig.1 a Front view. b Side view. c Left view

Fig. 2 Top view of MoX2 with a pure MoX2, b S vacancy, c Mo vacancy, and d Divacancy. Green and yellow balls represent Mo and X(S, Se, Te)
atoms, respectively.

Ren et al. Nanoscale Research Letters          (2019) 14:293 Page 2 of 7



2.394 Å (MVS), 2.420 Å to 2.398 Å (MVMo), and the
main reason was that the absence of atoms enhanced
the interaction between the adjacent Mo atoms and
other S atoms, the chemical bond became stronger and
the bond length became shorter.
Figure 3a–c displayed the calculated adsorption en-

ergy, charge transfer, and adsorption distance of CH4/
MoX2 system. Before the adsorption, the distance
between the CH4 gas molecules and the molybdenum
disulfide was 3.6 Å. The CH4 gas molecule obtained
about − 0.001 e to − 0.009 e from the four systems of
MoS2 sheet, − 0.009 e to − 0.013 e from the four systems
of MoSe2 sheet and − 0.014 e to − 0.032 e from the four
systems of MoTe2 sheet, respectively, which means that
CH4 acted as an acceptor. Inclusion of the van der
Waals correction enhances the adsorption energies of
CH4 gas molecule by − 0.31 eV to − 0.46 eV on the four
systems of MoS2 systems, by − 0.07 eV to − 0.50 eV on
the four systems of MoSe2 systems, and by − 0.30 eV to
− 0.52 eV on the four systems of MoTe2 system, and
0.01 eV was usually thought within the error range. It
was obvious that the adsorption distance was the short-
est in the case of S atom defects and divacancy defects.
To sum up the above data, we saw that the adsorption
effect was the best under the condition of divacancy
defected.

Adsorption of CH4 Gas Molecule on Monolayer MoS2
In order to have a clear understanding about the bond-
ing mechanism of CH4 gas molecule on pure and
defected MoS2 (including MVs, MVMo, and MVD), we
analyzed the corresponding density of states (DOS) for
adsorbed CH4 gas molecule in adsorption structures.
Comparing four systems, the adsorption effect of CH4

gas molecule on pure and defected MoS2 (including
MVs, MVMo, and MVD) were further investigated. The
DOS (Fig. 4) showed that there was a certain change in
the vicinity of the Fermi level, which was the same as
the general DOS form. The energy band gap of four sys-
tems was observed along the gamma point (G) noticed
to be 1.940 eV (MoS2), 1.038 eV (MVS), 0.234 eV
(MVMo), and 0.209 eV (MVD). Moreover, the observed
energy band gap of MoS2 nanosheet was in good agree-
ment with other reported theoretical work (1.78 eV [39],
1.80 eV [40]) and experimental work (1.90 eV [41], 1.98
eV [42]). Meantime, monolayers MoS2 had five peak
values, the peak was − 12.2 eV, − 5 eV, − 4 eV, − 2 eV,
and − 1 eV which were ascribed to the S atom in MoS2
and the Mo atom in MoS2. However, the DOS of four
systems (Fig. 4) showed that the electronic level of CH4

gas molecule has a peak for about − 3 eV which was
closed to Fermi level. It was contributed to the conduc-
tion band in the system and affects the conductivity of

Fig. 3 Adsorption energies, shortest atomic distances between molecule and MoX2, and charge transfers
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the system. Comparing four systems, the peak of − 12.5
eV MVs was obviously much lower than MoS2 because
of the defect of the S atom in the MoS2. And the defects
of the Mo atom do not have much effect; however, the
contribution at the conduction zone was still decreasing.
As shown in Fig. 3 b, obviously, the band around the 0
eV was getting smaller and smaller, and the curve was
more and more stable. In summary, there was no bond
between CH4 gas molecule and MoS2, and the electron
transfer and adsorption energy were small, and the ad-
sorption was not very strong, which was obviously phys-
ical adsorption.

Adsorption of CH4 Gas Molecule on Monolayer MoSe2
We studied the adsorption of CH4 gas molecule on four
systems of MoSe2, it could be seen from the DOS (Fig. 5)
that the electron energy levels of CH4 gas molecule in the
four adsorption orientations were close to the Fermi level,
which had a certain influence on the conductivity of the

system, and the band gap system was so small, same as ad-
sorption of MoS2. Meantime, the DOS (Fig. 5) also
showed that the Se atoms in MoSe2 had five peak values,
the peak was − 12 eV, − 5 eV, − 4 eV, − 3 eV, and − 2 eV,
the Mo atom in MoSe2 had overlapping peaks at about 0.5
eV and 2 eV. Compared with MoS2, Se contributed more
to the system than S in MoS2 below the fermi level, and
the energy band gaps of four systems were observed along
the gamma point (G) that was noticed to be 1.680 eV
(MoSe2), 1.005 eV (MVSe), 0.094 eV (MVMo), and 0.024
eV(MVD). The band was narrower and more stable
around the 0 eV. Therefore, it could be confirmed that the
adsorption properties and the CH4 gas molecule on the
four systems were physisorption.

Adsorption of CH4 Gas Molecule on Monolayer MoTe2
We studied the adsorption of CH4 gas molecule on four
systems of MoTe2, the DOS (Fig. 6) of CH4 gas molecule
on the MoTe2 were analyzed. As shown in Fig. 6, the

Fig. 4 The structure and DOS of CH4 gas molecule on four systems (MoS2, MVS, MVMo, and MVD)
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electronic levels of CH4 in the four MoTe2 systems were
short with CH4/MoS2 systems and CH4/MoSe2 systems,
and the energy band gap of four systems were observed
along the gamma point (G) was noticed to be 1.261 eV
(MoTe2), 0.852 eV (MVTe), 0 eV (MVMo), and 0.316 eV
(MVD). One of the strangest things of all was the defect
of the Mo atom, which allowed the system to be trans-
formed from semiconductor to metal. Meantime, the
DOS (Fig. 6) also showed that the Te atoms in MoTe2
had four peaks value, the peak was − 10 eV, − 5 eV, − 3
eV, and − 1 eV and the Mo atom in MoSe2 had overlap-
ping peaks at about 1 eV.
In general, on the basis of the adsorption behaviors of

CH4 gas molecule in different systems, the CH4 gas mol-
ecule adsorbed by the MVX could have two peaks near the
Fermi level. The DOS between the two spikes was not
zero but very wide, which reflected the strong covalent

property of the system. To summarize all the data, the
MVTe might become an ideal sensing material for the
detection of CH4 gas molecule.

Conclusions
We carried out density-functional-GGA studies to study
the interaction of an isolated CH4 gas molecule on
MoX2 (X=S, Se, Te). The results indicated that the dif-
ferent defects changed the electrical properties of MoX2

greatly, and our results revealed a weak interaction be-
tween the CH4 gas molecules and MoX2 monolayer,
which indicated the physical nature of the adsorption.
The total electron density plots confirmed the physisorp-
tion of gas molecules on the MoX2 surface, as the mater-
ial weakly interacts with the CH4 gas molecules without
the formation of covalent bonds at the interface region.
Furthermore, the structure of MVD has a good band

Fig. 5 The structure and DOS of CH4 gas molecule on four systems (MoSe2, MVSe, MVMo, and MVD)
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gap, semiconductor property, the best adsorption energy,
and the stronger charge transfer for the CH4 gas mol-
ecule. Besides, the electronic band structures of the sens-
ing system were altered upon the adsorption of gas
molecules. MoTe2 had the highest adsorption energy (−
0.51 eV), the shortest intermolecular distance (2.20 Å),
and the higher charge transfer (− 0.026 e). At last from
the analysis of these three materials, it could be seen that
MVD (MoTe2) had the best adsorption effect on CH4

gas molecule. The calculated results thus suggested a the-
oretical basis for the potential application of MVD(MoTe2)
monolayers in the CH4 based gas sensor devices.
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